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Today’s agenda
How do cameras record light? 
How do cameras record color? 
How can we transform that into color images? 
How can we display those properly?
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Camera pixel pipeline

every camera uses different algorithms 
the processing order may vary 
most of it is proprietary
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sensor analog-to-digital 
conversion (ADC)

processing: 
demosaicing, tone/

color mapping, white 
balancing, denoising 

& sharpening, 
compression

storage

After a slide by Marc Levoy



Example pipeline
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sensor analog-to-digital 
conversion (ADC)

processing: 
demosaicing, tone/

color mapping, white 
balancing, denoising 

& sharpening, 
compression

storage

After a slide by Marc Levoy

Canon 21 Mpix CMOS sensor Canon DIGIC 4 processor Compact Flash card



The photoelectric effect
When a photon strikes a material, an 
electron may be emitted 
- depends on the photon’s energy, which 

depends on its wavelength 

- there is no notion of “brighter photons”, 
only more or fewer of them

CS 89/189: Computational Photography, Fall 2015 5
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After a slide by Marc Levoy

(wikipedia)



Quantum efficiency
Not all photons will produce an electron 
- depends on quantum efficiency of the 

device 

- human vision: ~15% 

- typical digital camera: < 50% 

- best back-thinned CCD: > 90%
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QE =
# electrons

# photons

Hubble Space Telescope Camera 2

back-illuminated 
CMOS (Sony)

After a slide by Marc Levoy



Pixel size
The current from one electron is small 
(10–100 fA) 
- so integrate over space and time 

(pixel area × exposure time) 

- larger pixel × longer exposure means more accurate measure 

Typical pixel sizes: 
- iPhone 5s (4.89×3.67mm@3264×2448pixels) = 1.5μ×1.5μ = 2.25μ2 

- Canon 5D II (36.00×24.00mm@5616×3744pixels) = 6.4μ×6.4μ = 41μ2
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Full well capacity
How many electrons can a pixel hold? 
- depends mainly on the size of the pixel 

(but fill factor is important) 

Too many photons causes saturation 
- larger capacity leads to higher dynamic 

range between the brightest scene 
feature that won’t saturate and the 
darkest that isn’t too noisy
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Blooming
Charge spilling over to nearby pixels 
- can happen on CCD and CMOS 

sensors 

- don’t confuse with glare or other 
image artifacts
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(ccd-sensor.de)

After a slide by Marc Levoy



CMOS vs CCD sensors
CCD: charge-coupled device 
- oldest solid-state image sensor technology 

- charge shifted along columns to an output amplifier 

- highest image quality, but not as flexible or cheap 

CMOS: complementary metal-oxide semiconductor 
- newer, currently taking over 

- each pixel has own charge amplifier, read out by row/column addressing 

- same process used for CPUs and other VLSI chips 

- low power, but noisy (but getting better)
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Market trend
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Samsung white paper, Current Status and Future Perspectives of CMOS Image Sensor

After a slide by Steve Marschner



Smearing
Side effect of readout on CCD sensors 
- along columns; looks different than bloom 

- only happens if pixels saturate 

- doesn’t happen on CMOS sensors
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CMOS

CCD

(dvxuser.com)

(dvxuser.com)

After a slide by Marc Levoy



Analog to digital conversion (ADC)
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(maxim-ic.com)

After a slide by Marc Levoy

Convert analog signal to digital values 
Recent sensors have one ADC per column of pixels 
Must output more bits than JPEG stores (due to gamma) 
- converting ADC values (as stored in a RAW file) to the values 

stored in a JPEG file includes a step called gamma correction, 
which has the form output = inputγ (0.0 ≤ input ≤ 1.0) 

- since JPEG files only store 8 bits/pixel per channel, in order 
for a smooth gray ramp to fill each of these 256 buckets, the 
camera’s ADC needs to output ≥ ~10 bits; otherwise, dark 
parts of the ramp will exhibit banding after applying gamma 
correction and re-quantizing
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Fill factor
Fraction of sensor surface available to collect photons 
- can be improved using per-pixel microlenses

on a (front-illuminated) CMOS sensoron a CCD sensor

After a slide by Marc Levoy



Front vs. back illumination
Front illuminated 
- conventional design has interconnects and circuitry in front 
- causes reduced fill factor and QE (particularly for blue) 

Back illuminated 
- originally an esoteric product for astronomy 
- grind away back of chip and illuminate the  

photosensors directly 
- now becoming popular in small-format 

CMOS sensors (iPhone 5)
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Spatial prefiltering
Integrating light over an area at each pixel instead of point 
sampling serves two functions: 
1. captures more photons, to improve dynamic range 

2. convolves the image with a prefilter, to avoid aliasing 

Microlenses gather more light and improve the prefilter 
- microlenses ensure that the spatial prefilter is a 2D rect of width 

roughly equal to the pixel spacing 

Antialiasing filters are typically added to further reduce aliasing
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Removing the antialiasing filter
“hot rodding” your digital camera ($450 + shipping)
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anti-aliasing filter removed normal

After a slide by Marc Levoy



“hot rodding” your digital camera ($450 + shipping)

Removing the antialiasing filter
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anti-aliasing filter removed normal

After a slide by Marc Levoy



Nikon D800 (aa-filter) Nikon D800E (no aa-filter)



Recap
photons strike a sensor and are 
converted to electrons 
- performance factors include 

quantum efficiency and pixel size 

sensors are typically CCD or CMOS 
- both can suffer blooming; only 

CCDs can suffer smearing 

integrating light over an area 
serves two functions 
- capturing more photons, to improve 

dynamic range 

- convolving the image with a 
prefilter, to avoid aliasing 

- to ensure that the area spans pixel 
spacing, use microlenses 

- to improve further on the prefilter, 
use an antialiasing filter 

integrating light over time serves 
the same two functions 
- captures more photons, but may 

produce motion blur
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Color acquisition



Sensing color images
Problem: a photosite can record only 
one number 
We need 3 numbers for color 
What can we do?

CS 89/189: Computational Photography, Fall 2015 22

CMOS sensor



Sensing color images
Digital sensors are sensitive to all 
(visible) wavelengths 
- For details see: 

http://en.wikipedia.org/wiki/Image_sensor 
http://en.wikipedia.org/wiki/Active_pixel_sensor 
http://en.wikipedia.org/wiki/Charge-coupled_device 

Obtain color measurement using different color filters 
- Color filters play same role as response curves of photoreceptors 

- Absorb part of the spectrum
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CMOS sensor

23After a slide by Matthias Zwicker

http://en.wikipedia.org/wiki/Image_sensor
http://en.wikipedia.org/wiki/Active_pixel_sensor
http://en.wikipedia.org/wiki/Charge-coupled_device


CS 89/189: Computational Photography, Fall 2015

Infrared capture demo
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Approaches to sensing color
Scan 3 times (temporal multiplexing) 
Use 3 detectors  
(3-ccd camera) 
Use offset color samples (spatial multiplexing) 
Multiplex in depth (Tripack film, Foveon) 
Interferences (Lipmann)
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Temporal multiplexing
Examples: 
- Drum scanners 

- Flat-bed scanners 

- Maxwell, Russian photographs from 1900’s 

Pros: 
- 3 real values per pixel 

- Can use a single sensor 

Cons 
- Only for static scenes, slow
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Sergey Prokudin-Gorsky
Photographer to the Tzar, 1863–1944 
Shot sequentially through R, G, B filters 
Printing technology not available, but could project w/ RGB filters! 
Entire collection available: http://www.loc.gov/exhibits/empire/ 
Assignment 3
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http://en.wikipedia.org/wiki/Prokudin-Gorskii
http://www.loc.gov/exhibits/empire/


Sergey Prokudin-Gorsky, 
Alim Khan, 
emir of Bukhara (1911)



Sergey Prokudin-Gorsky, 
Pinkhus Karlinskii, 
Supervisor of the 
Chernigov Floodgate 
(1919)





Color displays
Temporal multiplexing 
DLP projector 
- http://en.wikipedia.org/wiki/

Digital_Light_Processing
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http://en.wikipedia.org/wiki/Digital_Light_Processing


3 sensors + beam splitter
High-end 3-CCD video cameras  
Use separation prisms 
- prisms that split wavelengths 

Pros 
- 3 real values per pixel 

- Little photon loss 

Cons 
- costly (needs 3 sensors) 

- space
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Trichroic beam splitter prism 
 http://en.wikipedia.org/wiki/3CCD

Philips 3CCD  
imaging block

After a slide by F. Durand & M. Zwicker

http://en.wikipedia.org/wiki/3CCD


3 sensors + beam splitter
Technicolor 
- 3 negatives exposed at once 

- via beam splitter and filters 

- large, heavy cameras; 
cumbersome printing process
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Wizard of Oz (1939)

After a slide by Steve Marschner



Human eye (cone mosaic), older color film, bayer mosaic/CFA (color filter array) 
Most still cameras, most cheap camcorder, some high-end video cameras (RED) 
Pros 
- single sensor 

- well mastered technology, high resolution 

Cons  
- needs interpolation, color jaggies 

- requires antialiasing filter (reduces sharpness) 

- loss of light

Spatial multiplexing
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Spatial multiplexing
Bayer filter 
- http://en.wikipedia.org/wiki/Bayer_filter 

- Most common in digital cameras 

2x2 pattern 
- 2 green, 1 red, 1 blue 

Other mosaics exist, but not as 
widespread
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http://en.wikipedia.org/wiki/Bayer_filter


Color displays
Spatial multiplexing
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http://en.wikipedia.org/wiki/RGB_color_model

http://en.wikipedia.org/wiki/RGB_color_model


Combination: pixel shift
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From Panasonic

3-ccd with prisms + spatial multiplexing 
The 3 ccds are shifted by 1/2 pixel to 
provided resolution increase 
- usually selectable (not shifted for lower-

res, shifted to get HD) 

- Often horizontal only

After a slide by Frédo Durand



http://www.petapixel.com/2011/05/26/hasselblad-
h4d-200ms-shoots-200mp-photos-with-a-50mp-sensor/
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Depth multiplexing (Foveon X3 sensor)
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Leverage difference in absorption per wavelength 
Pros 
- 3 real numbers per pixel 

- Less light loss 

Cons 
- Requires more color processing (3 numbers must be 

multiplied by matrix to get RGB) 

- Tends to be noisier (because color processing and 
because shallow blue layer) 

- Lower resolution these days

After a slide by Frédo Durand



Depth multiplexing 
Good old color film (tripack)
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Interferences (Lippmann process)
Metal mirror to create interferences 
- ancestor of holography 

- similar to colors in thin oil film
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http://nobelprize.org/nobel_prizes/physics/articles/biedermann/index.html

After a slide by Frédo Durand

http://nobelprize.org/nobel_prizes/physics/articles/biedermann/index.html


Interferences (Lippmann process)
Metal mirror to create interferences 
- ancestor of holography 

- similar to colors in thin oil film 

Pros 
- Full spectrum!!!!! 

- Gets you the Nobel if you invent it ;-) 

Cons 
- Needs high-resolution sensor/film 

- limited field of view for display
CS 89/189: Computational Photography, Fall 2015 42

'Saint-Maxime'', 1891-1899  
Photographer: Gabriel Lippmann

After a slide by Frédo Durand



Recap & Questions?
Scan 3 times (temporal multiplexing) 
Use 3 detectors  
(3-ccd camera) 
Use offset color samples (spatial multiplexing) 
Multiplex in depth (Tripack film, Foveon) 
Interferences (Lipmann)
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Bayer mosaic
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Sensor
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http://www.currentprotocols.com/WileyCDA/CPUnit/refId-ns0204.html

After a slide by Frédo Durand

http://www.currentprotocols.com/WileyCDA/CPUnit/refId-ns0204.html
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Microscope view of a CCD
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By kevincollins123

http://www.flickr.com/photos/kevincollins123/4584180753/

After a slide by Frédo Durand

http://www.flickr.com/photos/kevincollins123/
http://www.flickr.com/photos/kevincollins123/4584180753/


Bayer RGB mosaic
Each photosite has a different 
color filter
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Which one is the upper left color is 
arbitrary and depends on the camera

After a slide by Frédo Durand



Bayer RGB mosaic
Why more green? 
- We have 3 channels and square 

lattices don’t like odd numbers 

- It’s the spectrum “in the middle”  

- More important to human 
perception of luminance
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RAW files
Straight measurement from sensor 
- right after A/D conversion 

Each photosite has only one value 
- Filtered by R, G or B 

Usually 12-14 bits per pixel 
Linear encoding 
- No gamma! 

Can be read and converted using dcraw 
- ./dcrawx86 -v -d pics/DSC_8274.nef 
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A RAW file from a Nikon D70

After a slide by Frédo Durand



After a slide by Steve Marschner



RAW Bayer data

After a slide by Steve MarschnerAfter a slide by Steve Marschner



Demosaicing



Demosaicing
Interpolate missing values 
- 2/3 of the full-resolution data will be made up!
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After a slide by Frédo Durand



Half-resolution demosaicing
Simplest solution: treat each block of 2x2 as a pixel 
- Problem 1: resolution loss (megapixels so important for marketing!) 
- Problem 2: produces subpixel shifts in color planes!
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RAW bayer data

After a slide by Steve Marschner



2x2 bayer block

After a slide by Steve Marschner



Centered half-resolution
Average pixels in groups that all have the same “center 
of gravity” 
- avoids major color fringing
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After a slide by Steve Marschner



Centered half-resolution
Average pixels in groups that all have the same “center 
of gravity” 
- avoids major color fringing
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After a slide by Steve Marschner



RAW bayer data

After a slide by Steve Marschner



2x2 bayer block

After a slide by Steve Marschner



centered

After a slide by Steve Marschner



Linear interpolation
Average the 4 or 2 nearest neighbors (linear/tent kernel) 
- e.g. newgreen = 0.25 * (up+left+right+down)
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After a slide by Frédo Durand



RAW Bayer data

After a slide by Steve Marschner



2x2 Bayer block

After a slide by Steve Marschner



centered

After a slide by Steve Marschner



linear

After a slide by Steve Marschner



Better
Smoother kernels can also be used (e.g. bicubic) but 
need wider support
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After a slide by Frédo Durand



Results of simple linear

After a slide by Frédo Durand



Results - not perfect

After a slide by Frédo Durand



Questions?

After a slide by Frédo Durand



? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

The problem
Imagine a black-on-white corner 
Let’s focus on the green channel for now
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? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

The problem
Imagine a black-on-white corner 
Let’s focus on the green channel for now
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0 0 1
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0 0 1
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1 1 1

After a slide by Frédo Durand



? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

The problem
Imagine a black-on-white corner 
Let’s focus on the green channel for now
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After a slide by Frédo Durand



? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

The problem
Imagine a black-on-white corner 
Let’s focus on the green channel for now
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After a slide by Frédo Durand



Yep, that’s what we saw

After a slide by Frédo Durand



Green channel

After a slide by Frédo Durand



Edge-based 
Demosaicing



Idea
Take into account structure in 
image 
- Here, 1D edges 

Interpolate along preferred 
direction 
- In our case, only use 2 

neighbors
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0 0 1

0 0 1

0 0 1

0 0 1

1 1 1

1 1 1
After a slide by Frédo Durand



How do we decide?
Look at the similarity of 
recorded neighbors 
- Compare |up-down| to |right-left| 

- Be smart 

- See Assignment 3 

Called edge-based demosaicing
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0 0 1

0 0 1

0 0 1

0 0 1

1 1 1

1 1 1
After a slide by Frédo Durand



Green channel — naïve

After a slide by Frédo Durand



Green channel — edge-based

After a slide by Frédo Durand



Challenge with 
other channels



Problem
What do we do with red and blue?  
We could apply the edge-based principle 
But we’re missing more information 
But color transitions might be shifted
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? ?

?

?

Example (black-on-white corner)
Notion of edges unclear for pixels in empty rows/columns
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Example (black-on-white corner)
Even if we could do a decent job for each channel, the 
channels don’t line up 
- because they are not recorded at the same location
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Example (black-on-white corner)
Even if we could do a decent job for each channel, the 
channels don’t line up 
- because they are not recorded at the same location
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+ +

After a slide by Frédo Durand



Example (black-on-white corner)
Even if we could do a decent job for each channel, the 
channels don’t line up 
- because they are not recorded at the same location
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Bad color fringes!

After a slide by Frédo Durand



Recall color artifacts

After a slide by Frédo Durand



Green-based 
Demosaicing



Green-based demosaicing
Green is a better color channel 
- Twice as many pixels 

- Often better SNR 

- We know how to do edge-based green interpolation 

Do the best job you can and get high resolution from green 
Then use green to guide red & blue interpolation
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Interpolate difference to green
Interpolate green 
- using e.g. edge-based 

For recorded red pixels 
- compute R-G 

At empty pixels 
- Interpolate R-G naïvely 

- Add G 

Same for blue
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Black-on-white corner
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Measurements
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Edge-based green 
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Red-Green difference

CS 89/189: Computational Photography, Fall 2015 96

Zero everywhere!

After a slide by Frédo Durand



Red-Green difference
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Zero everywhere! 
- Easy!

After a slide by Frédo Durand



Add back green

CS 89/189: Computational Photography, Fall 2015 98After a slide by Frédo Durand



Repeat for blue
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Fully naïve

After a slide by Frédo Durand



Edge-based green, naïve red blue

After a slide by Frédo Durand



Green-based blue and red

After a slide by Frédo Durand



Still not 100% perfect 

After a slide by Frédo Durand



RAW bayer data

After a slide by Steve Marschner



2x2 bayer block

After a slide by Steve Marschner



centered

After a slide by Steve Marschner



linear

After a slide by Steve Marschner



edge-based

After a slide by Steve Marschner



dcraw

After a slide by Steve Marschner



Questions?
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Alternative 
Interpolate ratio
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Edge cases
http://www.luminous-landscape.com/contents/DNG-
Recover-Edges.shtml 
http://www.luminous-landscape.com/forum/index.php?
topic=51328.0 
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http://www.luminous-landscape.com/contents/DNG-Recover-Edges.shtml
http://www.luminous-landscape.com/forum/index.php?topic=51328.0


Denoising & Demosaicking
http://research.microsoft.com/en-us/
UM/people/yasumat/papers/
lowlight_CVPR11.pdf
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http://research.microsoft.com/en-us/UM/people/yasumat/papers/lowlight_CVPR11.pdf


Demosaicing inversion
http://research.microsoft.com/en-us/UM/people/
yasumat/papers/cvpr2010_Takamatsu.pdf 
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Links
http://www.csee.wvu.edu/~xinl/papers/demosaicing_survey.pdf 
http://www.unc.edu/~rjean/demosaicing/demosaicing.pdf 
http://www.pages.drexel.edu/~par24/rawhistogram/
40D_Demosaicing/40D_DemosaicingArtifacts.html 
http://www.guillermoluijk.com/tutorial/dcraw/index_en.htm 
http://www.cambridgeincolour.com/tutorials/RAW-file-format.htm 
http://www.cambridgeincolour.com/tutorials/camera-sensors.htm
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http://www.csee.wvu.edu/~xinl/papers/demosaicing_survey.pdf
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Color correction & 
calibration



Measured pixel values 
are not CIE RGB values! 
Remap to appropriate 
colorspace using 
transformation derived 
from response curves 
of color filters (sensor 
specific)
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Sensor architecture



Color sensing
Sensor is like eye 
- gives you projection onto a 3D (or >3D) space 

- but it is the wrong space! 

Problems with measured data 
- we have RGB, but not the right RGB 

- projection onto sensitivities, not coefficients for primaries (always) 

- projection onto wrong space 

- results depend strongly on illuminant (help!)
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Camera pixel pipeline
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sensor analog-to-digital 
conversion (ADC)

processing: 
demosaicing, tone/

color mapping, white 
balancing, denoising 

& sharpening, 
compression

storage

After a slide by Marc Levoy



Sensor color properties
Like eye, key property 
is the spectral 
sensitivity curves
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KAI-2093 Image Sensor 
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Figure 5: Quantum Efficiency Spectrum for Color Filter Array Sensors 
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Figure 6: Color Filter Array Pattern 
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KAI-2093 Image Sensor

In real cameras there will 
be a filter to block infrared

After a slide by Steve Marschner



Camera color problem
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span of 
camera’s 
spectral 

response 
functions

camera 
metamer 
of s

spectrum s

span of 
eye’s 
spectral 
response 
functions

s’visual 
metamer 

of s’

Given camera response, guess 
corresponding visual response 
This guess has to involve 
assumptions about which 
reflectance spectra are more likely 
Mathematical approach: 
- assume spectra in fixed subspace 

Or, more often, just derive a 
transformation empirically

After a slide by Steve Marschner



Assume spectrum s is a 
combination of three 
spectra 

Work out what combination it is 

- same math as additive color matching

Camera color rendering via subspace
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Project that combination onto visual response
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Assume spectrum s is a 
combination of three 
spectra 

Work out what combination it is 

- same math as additive color matching

Camera color rendering via subspace
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Project that combination onto visual response
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Empirical color transformation
Baseline method: use Macbeth Color Checker 
- a set of square patches of known color  

(these days you buy the MCC from X-Rite) 

Procedure 
1. Photograph the color checker under uniform illumination 

2. Measure the camera-RGB values of the 24 squares 

3. Look up the XYZ colors of the 24 squares 

4. Use linear least squares to find a 3x3 matrix that 
approximately maps the camera responses to the correct 
answers
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min
M

kCmacbeth � M Ccamerak
3×3 3×243×24
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Considering the illuminant
Problem with previous slide 
- the camera-RGB colors depend on the illuminant 

- the matrix M only works for the illuminant that was used to calibrate! 

Solutions? 
- calibrate separately for every illuminant? 

- correct for illuminant first, then apply matrix! 

von Kries hypothesis: eye accounts for illuminant by simply scaling 
the three cone signals separately 
- leads to “von Kries transform”: multiply by a diagonal matrix
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Putting it together: color processing
Calibrate your color matrix using a carefully white-balanced image 
- when solving for M, constrain to ensure rows sum to 1 

(then M will leave neutral colors exactly alone) 

For each photograph: 
1. determine illuminant 

2. apply von Kries 

3. apply color matrix 

4. apply any desired nonlinearity 

5. display the image!
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raw sensor color



white balanced raw sensor color



white balanced and matrixed to sRGB



Slide credits
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Matthias Zwicker 
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