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} Today's agenda

How do cameras record light?
How do cameras record color?
How can we transtform that into color images?

How can we display those properly?
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I Camera pixel pipeline

every camera uses different algorithms

the processing order may vary

most of it is proprietary
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I Example pipeline

storage

SanDisk

E treme

8.0ss
SanDisk 2

Canon 21 Mpix CMQOS sensor Canon DIGIC 4 processor Compact Flash card
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I The photoelectric effect

When a photon strikes a material, an
electron may be emitted

- depends on the photon’s energy, which
depends on its wavelength

h X c
Ephoton — Y

only more or fewer of them

(wikipedia)
After a slide by Marc Levoy CS 89/189: Computational Photography, Fall 2015 5



¥ Quantum efficiency

Not all photons will produce an electron

- depends on quantum efficiency of the |
device of

QF
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¢ & “Photon Rain” N

I Pixel size

The current from one electron is small NI .
(10-100 fA)

- so integrate over space and time
(pixel area x exposure time)

- larger pixel x longer exposure means more accurate measure

Typical pixel sizes:
- iPhone 5s (4.89x3.67mm@3264x2448pixels) = 1.5ux1.5u = 2.25u°
- Canon 5D 11 (36.00%24.00mm@5616x3744pixels) = 6.4ux6.4u = 41p°
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110000

- Digital Cameras: Sensor Full Well
100000 E -

I Full well capacity

80000 F

. Canon 1D Mark Il
70000 E —-
Canon 5D Mark Il ¢ i

- z ' Clank
60000 —© sgon % /

ooooooooo

50000 F

Electrons

How many electrons can a pixel hold?

40000 [

30000 F

- depends mainly on the size of the pixel ==}

10000 F

® Nikon D70

000000000

(but fill factor is important) P ———

Too many photons causes saturation IR

- larger capacity leads to higher dynamic
range between the brightest scene
feature that won't saturate and the
darkest that isn’t too noisy
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I Blooming

Charge spilling over to nearby pixels

- can happen on CCD and CMQOS
Sensors

1
w

- don’t confuse with glare or other ‘

Y
e X

image artifacts

(ccd-sensor.de)
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¥ CMOS vs CCD sensors

Silicon Photodiode Anatomy

~ CCD: charge-coupled device

Pixel
Voltage Photons CCD —
Control  Reset Trér;?;er Gates_

Buried
Channel

- oldest solid-state image sensor technology

- charge shifted along columns to an output amplitier

Lateral

Overflow ppotodiode

Drain
lm&';g:ated Potential

Figure 5 Potenti ?Well Barrier p-Silicon

- highest image quality, but not as flexible or cheap

oy o tne ctve o sensor st VIO S complementary metal-oxide semiconductor

& - newer, currently taking over

Filter

Microlens 7—’
Reset
: Transistor

4
Amplifier ’
Row

- l 04 AN each pixel has own charge amplifier, read out by row/column addressing

R \ Photodiod
odiode
K

silicon
Substrate——

- same process used for CPUs and other VLSI chips

Potential
2 Well
Figure 3

- low power, but noisy (but getting better)
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I M a r ket t re n d Samsung white paper, Current Status and Future Perspectives of CMOS Image Sensor

DSC Market Trend
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ISmearing

Side eftect of readout on CCD sensors
- along columns; looks different than bloom
- only happens it pixels saturate

- doesn’t happen on CMQOS sensors

(dvxuser.com)
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IAnang to digital conversion (ADC)

Convert analog signal to digital values % (maxim-ic.com)

Recent sensors have one ADC per column of pixels 4 >

Must output more bits than JPEG stores (due to gamma) % ; T

- converting ADC values (as stored in a RAW file) to the values i ” > ;
stored in a JPEG file includes a step called gamma correction, | > i T
which has the form output = input' (0.0 < input < 1.0) %

- since JPEG files only store 8 bits/pixel per channel, in order g _>:

for a smooth gray ramp to fill each of these 256 buckets, the -
camera’s ADC needs to output = ~10 bits; otherwise, dark 3
parts of the ramp will exhibit banding after applying gamma
correction and re-quantizing

gamma encoded brightness

original brightness
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) Fill factor

Fraction of sensor surface available to collect photons

- can be improved using per-pixel microlenses

CFA

o 2 T ML PRASS o

OX PASS

| \00 /9 ,
Anti -Reflector l Poly -Si Electrode l

) W 2 N
n m I n N \. N

P n

p-well ILD 1
1)
n-Substrate g BPS6
STi lronch- lih_otQ-Diodo
on a CCD sensor on a (front-illuminated) CMQOS sensor
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I Front vs. back illumination

Front illuminated

- conventional design has interconnects and circuitry in front

- causes reduced fill tactor and QE (particularly for blue)

Front-illuminated structure back-illuminated structure

Back illuminated

- originally an esoteric product for astronomy

- grind away back of chip and illuminate the
photosensors directly et

Color filters

- now becoming popular in small-format e | EESSEIEEE
CMOS sensors (iPhone 5)

Photosensitive layer
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) Spatial prefiltering

Integrating light over an area at each pixel instead of point
sampling serves two functions:

1. captures more photons, to improve dynamic range

2. convolves the image with a prefilter, to avoid aliasing

Microlenses gather more light and improve the prefilter

- microlenses ensure that the spatial prefilter is a 2D rect of width
roughly equal to the pixel spacing

Antialiasing filters are typically added to further reduce aliasing

After a slide by Marc Levoy CS 89/189: Computational Photography, Fall 2015
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I Removing the antialiasing filter
“hot rodding” your digital camera ($450 + shipping)

anti-aliasing filter removed

After a slide by Marc Levoy CS 89/189: Computational Photography, Fall 2015
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I Removing the antialiasing filter

“hot rodding” your digital camera ($450 + shipping)

anti-aliasing filter removed normal

After a slide by Marc Levoy CS 89/189: Computational Photography, Fall 2015
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Y Recap

photons strike a sensor and are - convolving the image with a
Converted to electrons prefi\ter, to avoid a\iasing

- to ensure that the area spans pixel

- performance factors include
spacing, use microlenses

quantum efficiency and pixel size

- to improve further on the pretfilter,
use an antialiasing filter

sensors are typically CCD or CMOS

- both can sufter blooming; only

CCDs can suffer smearing integrating light over time serves

: . the same two functions
integrating light over an area

serves two functions - captures more photons, but may

| | produce motion blur
- capturing more photons, to improve

dynamic range

CS 89/189: Computational Photography, Fall 2015
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Color acquisition
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Sensing color images

Problem: a photosite can record only
one number

We need 3 numbers for color

What can we do?

CS 89/189: Computational Photography, Fall 2015 22
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¥ Sensing color images

Digital sensors are sensitive to all
(visible) wavelengths

- For details see:
http://en.wikipedia.org/wiki/lmage_sensor
http://en.wikipedia.org/wiki/Active_pixel_sensor
http://en.wikipedia.org/wiki/Charge-coupled_device

Obtain color measurement using different color filters
- Color tilters play same role as response curves of photoreceptors

- Absorb part of the spectrum

After a slide by Matthias Zwicker CS 89/189: Computational Photography, Fall 2015 23


http://en.wikipedia.org/wiki/Image_sensor
http://en.wikipedia.org/wiki/Active_pixel_sensor
http://en.wikipedia.org/wiki/Charge-coupled_device

} Infrared capture demo

CS 89/189: Computational Photography, Fall 2015
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IApproaches to sensing color

Scan 3 times (temporal multiplexing)

Use 3 detectors
(3-ccd camera)

F

Use offset color samples (spatial mﬁltiplexing)
Multiplex in depth (Tripack film, Foveon)

Interferences (Lipmann)

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 25



¥ Temporal multiplexing

Examples:

- Drum scanners

- Flat-bed scanners

- Maxwell, Russian photographs from 1200’s

Pros:
- 3 real values per pixel

- Can use a single sensor

Cons

- Only for static scenes, slow

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 26



ll Sergey Prokudin-Gorsky

Photographer to the Tzar, 1863-1944

Shot sequentially through R, G, B filters

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 27


http://en.wikipedia.org/wiki/Prokudin-Gorskii
http://www.loc.gov/exhibits/empire/

Sergey Prokudin-Gorsky,
INIT L GERY
emir of Bukhara (1911)




Sergey Prokudin-Gorsky,
Pinkhus Karlinskii,
Supervisor of the

Chernigov Floodgate
(1919)
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I Color displays

Temporal multiplexing

DLP projector

- http://en.wikipedia.org/wiki/
Digital_Light_Processing

After a slide by Matthias Zwicker CS 89/189: Computational Photography, Fall 2015 31


http://en.wikipedia.org/wiki/Digital_Light_Processing

} 3 sensors + beam splitter

High-end 3-CCD video cameras

Use separation prisms

Trichroic beam splitter prism
http://en.wikipedia.org/wiki/3CCD

Philips 3CCD

- prisms that split wavelengths

Pros
- 3 real values per pixel

- Little photon loss

Cons

- costly (needs 3 sensors)

- space
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http://en.wikipedia.org/wiki/3CCD

} 3 sensors + beam splitter

Technicolor
- 3 negatives exposed at once
- via beam splitter and filters

- large, heavy cameras;
cumbersome printing process

Wizard of Oz (1939)

After a slide by Steve Marschner CS 89/189: Computational Photography, Fall 2015 33
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ISpatiaI multiplexing

L) ©
.. .:.:.:.:.. ... P4 ::.:. .. 0. ..0..:.: .~. o

Human eye (cone mosaic), older color film, bayer mosaic/CFA (color filter array)
Most still cameras, most cheap camcorder, some high-end video cameras (RED)

Pros

- single sensor

- well mastered technology, high resolution N
Cons - : ’ Filter layer
Sensor array

- needs interpolation, color jaggies |
B

- requires antialiasing filter (reduces sharpness)

- loss of light

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 34



ISpatiaI multiplexing

Bayer filter

- http://en.wikipedia.org/wiki/Bayer_filter

- Most common in digital cameras

Incoming light

2x2 pattern

- 2 green, 1 red, 1 blue . . .

Filter layer

Sensor array

Other mosaics exist, but not as
widespread

Resulting pattern

CS 89/189: Computational Photography, Fall 2015 35
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isplays

¥ Color d
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Spatial multiplexing

Iki/RGB_color model

.org/w

la

//en.wikipedi

http
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http://en.wikipedia.org/wiki/RGB_color_model

} Combination: pixel shift

3-ccd with prisms + spatial multiplexing  awancea spatai otset rectnoion

Horizontal and Vertical Offset Spatial Technology

The 3 ccds are shifted by 1/2 pixel to
provided resolution increase

P ] e H&V pixel shift is required

- usually selectable (not shifted tor lower- === | " —GGeie=—
mememememe _ Signal Process?ngTechnology 9

res, shifted to get HD) s

, From Panasonic
- Often horizontal only

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 37



http://www.petapixel.com/2011/05/26/hasselblad-
h4d-200ms-shoots-200mp-photos-with-a-50mp-sensor/

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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I Depth multiplexing (Foveon X3 sensor)

Leverage difference in absorption per wavelength

Pros
- 3 real numbers per pixel

- Less light loss

Cons

- Requires more color processing (3 numbers must be -
mU‘t|p‘|ed by matﬂx 'tO get RGB) Silicon color absorption Py A RO OLOIOE
rix'? microns 41

<Blue _
absorption

- Tends to be noisier (because color processing and
because shallow blue layer)

<Green
absorption

{Red
absorption

S8ilicon wafer

|-7 SUCIDTW G > —-l

- Lower resolution these days

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 39



¥ Depth multiplexing

Good old color film (tripack)
P s

T, S .
W LT [T Blue sensitive

g we o g e o aes ez A8 Y el low fllter
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Metal mirror to create interferences

- ancestor of holography

- similar to colors in thin oil film

i two

n
Clden; lighy reflecting
\/%M/\/ surfaces

http://nobelprize.org/nobel_prizes/physics/articles/biedermann/index.html
After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 41



http://nobelprize.org/nobel_prizes/physics/articles/biedermann/index.html

I Interferences (Lippmann process)

'Saint-Maxime'', 1891-1899

Metal mirror to create interferences Photographer: Gabriel Lippmann

- ancestor of holography -*-'E'**L— -
- similar to colors in thin oil film '_

Pros

- Full spectrum!!!ll

- Gets you the Nobel it you invent it ;-)

Cons

- Needs high-resolution sensor/tilm

- limited field of view for display

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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¥ Recap & Questions?

Scan 3 times (temporal multiplexing)

Use 3 detectors .
(3-ccd camera) ey

Use offset color samples (spatial multiplexing)
Multiplex in depth (Tripack film, Foveon)

Interferences (Lipmann)

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 43



Bayer mosaic




} Sensor

enlargedipixel

elementsiwith

Bayermosaic
filters

e
o A e e 48

!
%
;
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http://www.currentprotocols.com/WileyCDA/CPUnit/retld-ns0204.html

After a slide by Frédo Durand
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} Microscope view of a CCD

By kevincollins123

http://www.flickr.com/photos/kevincollins123/4584180753/
After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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http://www.flickr.com/photos/kevincollins123/
http://www.flickr.com/photos/kevincollins123/4584180753/

Which one is the upper left color is

I Baye I RG B MoOSa iC arbitrary and depends on the camera

Each photosite has a different
color filter

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 47



I Bayer RGB mosaic

Why more green?

- We have 3 channels and square
lattices don't like odd numbers

- It's the spectrum “in the middle”

- More important to human
perception of luminance

>
S|
&
m -
»
E
3

0 ..... M 2
400 Wavelen gth 700
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} RAW files

Straight measurement from sensor

- right after A/D conversion

Each photosite has only one value

- Filtered by R, G or B

Usually 12-14 bits per pixel

Linear encoding

- No gammal

Can be read and converted using dcraw
- ./dcrawx86 -v -d pics/DSC_8274 .net

After a slide by Frédo Durand
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A RAW file from a Nikon D70

N
EEEBE
i

=
H B . =

I8
H
i

BEEEER L)
HE R EEEEEENR 7l
G | E R B | B =i IS |

[N
=
=
M

E R EEEEN
=
&

]
il
n
B
B

> { %*?"xq;méy.y 3%

>

Durand




- 4

| p
" ~

_
 '“ y

o7 e P B AT AR : /
.-, ‘ﬂ\sgk :

* [ S .
SRR

\l]"h »

mm.l "“"ﬂ =
?j‘ e
ﬂ . ﬁ .na""x sirrd ..,,, W

.1'!".':' 2N Sk

L
g‘l!“ Py N
’T W“Ulﬂimr “\~)‘_ i v ‘~ .
L)

”»
N g - iy
O b b NI
AR B |t A u.-q. .,-,. A ALy
*.ia 1 D <
s ! " ‘u,‘ '
mx.t 1";“ .‘ ~- Er‘\“"!
te ¥ e
.\K\ .
.
"
Ed

After a slide by 5t \%




RAW Bayer data

After a slide by Steve Marschner



Demosaicing




¥ Demosaicing

Interpolate missing values

- 2/3 ot the tull-resolution data will be made up!

I I

After a slide by Frédo Durand
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¥ Half-resolution demosaicing

Simplest solution: treat each block of 2x2 as a pixel
- Problem 1: resolution loss (megapixels so important tor marketing!)

- Problem 2: produces subpixel shifts in color planes!

After a slide by F. Durand & S. Marschner CS 89/189: Computational Photography, Fall 2015
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RAW bayer data
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) Centered half-resolution

Average pixels in groups that all have the same “center
of gravity”

- avoids major color fringing

H B H ISENESEIE R
SEER - EARAEN KD toe'a Kl o il Ki
S R A A KA KN
IIIIII HUKN H K
H K SR IIIIII
IIIIII HUKNEN] K
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) Centered half-resolution

Average pixels in groups that all have the same “center
of gravity”

- avoids major color fringing

After a slide by Steve Marschne CS 89/189: Computational Photography, Fall 2015
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RAW bayer data
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I Linear interpolation

Average the 4 or 2 nearest neighbors (linear/tent kernel)

- e.g.newgreen = 0.25 * (uptleft+right+down)

II%III IIIIII I I
ST N KA K

IIIIIIl K Senst E H K
I I IIIIII IIIIII
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RAW Bayer data
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) Better

Smoother kernels can also be used (e.g. bicubic) but
need wider support

K SR
7 5 7| i i H K
g B S S A S R N K K
KA KA RI RS KRR D Wit K 2 B
B B SR
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Results of simple linear

After a slide b




Results - not perfect

o

R R T S R

'US POLICE

After a slide b




ions?

Quest

After a slide b




IThe problem

Imagine a black-on-white corner

Let’s focus on the green channel for now

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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IThe problem

Imagine a black-on-white corner

Let’s focus on the green channel for now
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IThe problem

Imagine a black-on-white corner

Let’s focus on the green channel for now
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IThe problem

Imagine a black-on-white corner

Let’s focus on the green channel for now

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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Edge-based
Demosaicing




I ldea

Take into account structure in
Image

- Here, 1D edges

Interpolate along preferred
direction

- In our case, only use 2
neighbors

I After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 79



¥ How do we decide?

Look at the similarity of
recorded neighbors

- Compare |up-down| to |right-left|
- Be smart

- See Assignment 3

Called edge-based demosaicing

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 80
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Challenge with
other channels




I Problem

What do we do with red and blue?

We could apply the edge-based principle
But we're missing more information

But color transitions might be shifted

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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I Example (black-on-white corner)

Notion of edges unclear for pixels in empty rows/columns

27

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 85



I Example (black-on-white corner)

Even if we could do a decent job for each channel, the
channels don't line up

- because they are not recorded at the same location

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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I Example (black-on-white corner)

Even if we could do a decent job for each channel, the
channels don’t line up

- because they are not recorded at the same location

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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I Example (black-on-white corner)

Even if we could do a decent job for each channel, the
channels don’t line up

- because they are not recorded at the same location

Bad color fringes!

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015

88






Green-based
Demosaicing




¥ Green-based demosaicing

Green is a better color channel

- Twice as many pixels
- Often better SNR

- We know how to do edge-based green interpolation
Do the best job you can and get high resolution from green

Then use green to guide red & blue interpolation

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015 91



I Interpolate difference to green

Interpolate green

- using e.g. edge-based
For recorded red pixels
- compute R-G

At empty pixels

- Interpolate R-G naively

- Add G

Same for blue

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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I Black-on-white corner

After a slide by Frédo Durand CS 89/189: Computational Photography, Fall 2015
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I Measurements
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¥ Edge-based green
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I Red-Green difference

Zero everywhere!
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I Red-Green difference

Zero everywhere!

- Easy!
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IAdd back green
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) Repeat for blue
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RAW bayer data
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¥ Questions?
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I Alternative

Interpolate ratio
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I Edge cases

http://www.luminous-landscape.com/contents/DNG-
Recover-Edges.shtml

http://www.luminous-landscape.com/forum/index.php?
topic=51328.0
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Denoising & Demosaicking

http://research.microsoft.com/en-us/ i Kbt ademosaiced WWour result
B B
UM/people/yasumat/papers/ >

lowlight CVPR11.pdf

demosaiced our-result
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I Demosaicing inversion

http://research.microsoft.com/en-us/UM/people/
yasumat/papers/cvpr2010_Takamatsu.pdf
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I Links

http://www.csee.wvu.edu/~xinl/papers/demosaicing_survey.pdf

http://www.unc.edu/~rjean/demosaicing/demosaicing.pdf

http://www.pages.drexel.edu/~par24/rawhistogram/
40D_Demosaicing/40D_DemosaicingArtifacts.html

http://www.guillermoluijk.com/tutorial/dcraw/index_en.htm

http://www.cambridgeincolour.com/tutorials/RAW-file-format.htm

http://www.cambridgeincolour.com/tutorials/camera-sensors.htm
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Color correction &
calibration




§ Sensor architecture

Measured pixel values
are not CIE RGB values!
Color

Remap to appropriate Filter
. Array

colorspace using .

transformation derived  >esor

Substrate

from response curves

of color filters (sensor

specific)

Microlens
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§ Color sensing

Sensor is like eye
- gives you projection onto a 3D (or >3D) space

- but it is the wrong space!

Problems with measured data

- we have RGB, but not the right RGB

- projection onto sensitivities, not coefticients for primaries (always)
- projection onto wrong space

- results depend strongly on illuminant (help!)
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I Camera pixel pipeline
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I Sensor color properties

Like eye, key property
is the spectral
sensitivity curves

After a slide by Steve Marschner
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In real cameras there will
be a filter to block infrared

KAI-2093 Image Sensor

With clear
cover glass
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¥ Camera color problem

Given camera response, guess
corresponding visual response  spanof

camera’s

camera

metamer

o o ) / of s

'\/ \o— spectrum s

\ e span of
S

spectral

This guess has to involve response
_ _ functions

assumptions about which

reflectance spectra are more likely

visual ’
metasrr?zr — |- sggcstral
. of s’ _— response
Mathematical approach: functions

- assume spectra in fixed subspace

Or, more often, just derive a
transformation empirically
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I Camera color rendering via subspace

Assume spectrumsisa  Work out what combination it is

combination of three |’di ( [_ - _] [ | ] ) TQ{H
Spectra dy | = —TGg — S1 S72 83 a
1 e 3 —r—lL T e
S] = {51 S|2 S|3 {”Z - same math as additive color matching
L 3 _

Project that combination onto visual response
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I Camera color rendering via subspace

Assume spectrumsisa  Work out what combination it is

combination of three ” e —T1T1 | [T\ 'R

Spectra ar | = —71rc— | |s1 S» S3 G

i ] e 13 —rm—] Ll ] | b

S| — 5‘1 S|2 S|3 142 - same math as additive color matching
£Z3_

Project that combination onto visual response

— - — - — - — - —_ _1 — -
S —rs — [ || | | —rwR— [ |

M| =|—rmv— | |51 S 83 —7c— | |S1 S» S3

L — o —] L [

S ) R
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I Empirical color transformation

Baseline method: use Macbeth Color Checker

- a set of square patches ot known color
(these days you buy the MCC from X-Rite)

Procedure

0.8+ 540)

1. Photograph the color checker under unitorm illumination o7

0.6

560

2. Measure the camera-RGB values of the 24 squares s

3. Look up the XYZ colors of the 24 squares ’ 0:42-

4. Use linear least squares to find a 3x3 matrix that 0-3:
approximately maps the camera responses to the correct 02
ASWETS min H Cmacbeth — M Ccamera H o e

M 3x24 3x3 3x24 P60 01 02 03 04 05 06 07 08

X

After a slide by Steve Marschner CS 89/189: Computational Photography, Fall 2015 124



} Considering the illuminant

Problem with previous slide
- the camera-RGB colors depend on the illuminant

- the matrix M only works for the illuminant that was used to calibrate!

Solutions?
- calibrate separately for every illuminant?

- correct for illuminant first, then apply matrix!

von Kries hypothesis: eye accounts for illuminant by simply scaling
the three cone signals separately

- leads to “von Kries transtorm”: multiply by a diagonal matrix
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I Putting it together: color processing

Calibrate your color matrix using a carefully white-balanced image

- when solving for M, constrain to ensure rows sum to 1
(then M will leave neutral colors exactly alone)

For each photograph:
1. determine illuminant
2. apply von Kries
3. apply color matrix
4. apply any desired nonlinearity
5. display the image!
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I Slide credits

Frédo Durand

Steve Marschner
Matthias Zwicker

Marc Levoy
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